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T h e r m o d y n a m i c s  a t  H i g h  E n e r g i e s  
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A new thermodynamics, applicable to cosmic ray showers and high-energy 
physics, is developed. Although all density expressions are unaltered, their global 
forms are modified due to the new dependence between the volume and the 
temperature. This occurs in bound systems where the number of particles, instead 
of being an increasing function of the temperature, is a decreasing one. That 
certain global expressions for the entropy turn out to be convex functions of the 
energy necessitates their reinterpretation as the reduction in entropy caused by 
the volume-temperature constraint. The continuous distribution for the production 
of hadrons with energies greater than a given amount is shown to correspond to 
the fact that discrete particle fluctuations follow Poisson's law. 

1. EXTREME-VALUE DISTRIBUTION OF COSMIC RAY 
SHOWERS 

Prior to the advent of particle accelerators, cosmic rays were the primary 
source of data for high-energy particle physics. A hallmark of primary cosmic 
radiation is that instead of monoenergetic particles, it has an energy spectrum 
of primary protons and other nuclei that may be represented as (Rossi, 1955) 

A v(E) = - -  
E~ 

where v(E) is the number of secondary particles having an energy greater 
than the low-energy cutoff of the spectrum. This form of the spectrum with 
o" = 5/2 has been used for all energies >2  GeV (Rossi, 1955). The constant 
A is related to the energy of the primary particle, E' by A = E '~. If v0 
is the maximum number of particles that can be produced in a shower, then 
v o = (E ' / Eo )  ~. T h e  minimum energy that a secondary particle can possess, 
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E0, is the low-energy, cutoff of the spectrum, which takes place at about 58 ~ 
geometric latitude, corresponding to a proton energy of 5.6 • 108 eV (Ginz- 
burg, 1958). 

Introducing the maximum number of particles into the spectral distribu- 
tion yields 

which can be interpreted as the tail of a probability distribution. In the 
course of time, the power law (1) can be modified by ionization, statistical 
acceleration, dissipative losses, and bremsstrahlung. For cosmic protons the 
nuclear magnetic bremsstrahlung and ionization losses will be small in the 
relativistic range, so that the spectral energy density retains its power-law 
form (Ginzburg, 1958). 

However, the initial tail distribution (1) can change in other, nondeter- 
ministic ways, simply with the increase in the number of particles in the cosmic 
ray shower. In fact, the tail distribution (1) will be "attracted" asymptotically to 
a limit distribution other than that dictated by the central limit theorem. The 
limit distribution will turn out to be the order-statistic generalization of an 
extreme-value distribution (Lavenda, 1996), since the initial distribution (1) 
has the form of a Pareto-Lrvy distribution familiar from economics. 

If hadron statistical physics followed the law of large numbers and the 
central limit theorem, then the probability that the energy would lie between 
E and E + dE would be given by (Lavenda, 1991, w 

h(E; v) dE - 13(13E)"-l.e-f~e dE (2) 
F(v) 

where 13 is the inverse temperature in energy units where Boltzmann's constant 
equals unity. The first moment of the gamma density (2), 

13~ --  v (3)  

where E is the average energy and v is half the number of degrees of freedom, 
ensures the equipartition of energy. However, the law of equipartition of 
energy requires particle conservation, which is certainly not fulfilled at high 
temperatures exceeding those of particle thresholds. Moreover, equipartition 
states that the average kinetic energy is proportional to the energy itself, 
leaving no contribution to particle creation. 

Thus, we need a generalization of the law of equipartition of energy (3) 
that would allow for variable dependences of the temperature of the energy. 
This leads us to consider 

13~" = v(~7) (4) 

where the number of particles of energy >b7 has the form (1). 
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The power law for the number of particles having energies > E  also has 
the correct form for the multiplicity of secondary hadrons formed from 
hadron-nucleon collisions, when it is taken to be a function of the energy 
of the incident hadron E'.  It has been experimentally established that the 
multiplicity of secondary hadrons produced in the collision of hadrons and 
other particles with nucleons increases with increasing energy of the primary 
hadron and has the form v = (E'/E) ~, for energies in the center-of-mass 
frame >10  GeV, with an exponent cr = 0.4 (Kalinoskii et al., 1989). 

Following Bhabha and Heitler (1937), we measure energy by means of 
the dimensionless quantity 

E 
y = I n -  (5) 

E0 
Let us assume for the moment that the relation between E and y is of the 
same form as (4), namely 

13E = v0 e-oy (6) 

which will have maximum probability of occurrence for the value E. Then, 
if (6) is employed as a transformation of the independent variable, we obtain 
a new distribution 

h(y; n) dy -- trF- ~ exp { - v ~ y  - Vo e-~y} dy (7) 

which is a double-exponential distribution for the vth largest value (Cram6r, 
1946). Provided v is sufficiently large that Stirling's approximation is applica- 
ble, (7) will have a sharp maximum at 

1 v0 
y = - In - -  (8) 

o" v 

This simply says that the thermal equation of  state (4) maximizes the 
probability. 

The basis of  the transformation from the gamma distribution (2) to the 
double-exponential distribution (7) rests on the theory of order statistics, and 
in particular on a method introduced by Cram6r (1946). Suppose we are 
sampling values of the energy from a population with a continuous distribution 
F(E) whose density isflE). The probability that, in a population of v0 particles, 
v0 - v have energies < E  and v - 1 particles have energies > E + dE, with 
the remaining particle energies falling in the interval from E to E + dE, is 
given by the beta distribution 

1 
g(E; v) dE = B(v,vo - v + 1) F~~ - F(E)]~-I f ( E )  dE (9) 
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where B is the beta function. If the tail of the distribution falls off according 
to the power law 

then in the asymptotic limit, as the population grows without limit, the 
distribution will be attracted to the strictly stable law 2 

o'v~(E.~) ~' dE (11) 
h(E; v) dE = F(v) e-~~176 "E- 

The derivation of the asymptotic distribution identifies particles with 
what we have previously referred to as half degrees of freedom. In high- 
energy physics, fireballs and low-lying resonances are essentially the same 
thing: excited hadrons (Hagedorn, 1965). The fact that the excited hadrons 
v vary with their energy as v - E -'~ could possibly be explained by Landau's 
observation (Belenkij and Landau, 1956) that at the moment of particle 
collision when the fireball is formed, the particle densities are so high and 
the interactions are so strong that the concept of an entity referred to as a 
"particle" loses meaning. It is only when the system expands, thereby decreas- 
ing both the density and temperature, that particles, or excitations, become 
discrete entities. 

That v also varies with the temperature as v ~ T -'/~+'~) is an additional 
hypothesis: since the nuclear interaction is very strong and the volume into 
which the energy is released is so small, thermal equilibrium should be 
achieved. This, in effect, is what allows us to determine the energy distribution 
by statistical laws (Fermi, 1950, 1951). The crucial point is that it is not the 
global volume housing the entire system, or what would be analogous to 
the Hohlraumstrahlung in blackbody radiation, that enters into the relevant 
thermodynamic expressions, but, rather, the volume, which is determined by 
the range of the strong interactions among the particles. 

The probability distribution (11) is comparable with Fermi's (1950, 
1951) expression for the probability of the multiple production of v pions. 
Fermi started with the product of the independent statistical weighting func- 
tions of phase space and proceeded to the asymptotic limit. Fermi predicted 
a simple exponential decay in probability with increasing energy, while (11) 
has an exponential factor which increases with the energy. It is apparent from 
its derivation that Fermi's expression is not a probability, since it is not 
normalizable. If, like Fermi, we assume the particles to be statistically inde- 

2Since the distribution is strictly asymptotic in the limit v0 ~ oo, we would have to introduce 
the scaling coefficients s~o in F(y), i.e., F(s,oE), where s~o = Eov~/*. The scaling constants 
S~o ~ oo the limit. 
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pendent and all with a common tail distribution given by (10), then order 
statistics asserts that the asymptotic probability of finding v pions with ener- 
gies > E  will be given by (11). 

2. THERMODYNAMICS OF BOUND SYSTEMS 

According to the generalization (4) of the equipartition law and the 
Paret_o-Lrvy tail, (1), the temperature increases faster than the average energy, 
Y - E ~+'~), for r > 0. This behavior is certainly not common in conventional 
thermodynamics, For an ideal material gas, the temperature increases with 
the energy itself, since the particle number is constant. For a photon gas, the 
temperature increases only as T -- E TM, where the additional energy is available 
for the creation of photons. The fact that the temperature grows faster than 
the energy itself is a hallmark of bound thermodynamic systems. One should 
also realize that there is an inherent connection between binding and scatter- 
ing; a bound state can be thought of as a continuous sequence of scatterings 
that keeps the particle from escaping to infinity (Gottfried and Weisskopf, 
1982). Consequently, the scattering processes should manifest the same tem- 
perature dependence on the energy that bound systems do. 

That the thermal equation of state (4) actually applies to a bound system 
can be shown by an application of the virial theorem for nonrelativistic 
systems (Jeans, 1929). For bound systems the total energy, 

% = ~ + f I + E  (12) 

is negative, where ~- is the average kinetic energy, and f l  < 0 can stand for 
any attractive potential such as the gravitational potential. Now, from the 
stationary virial, it follows that 

2~  + II = 0 

so that the total energy reduces to 

= ~ : -  ~ 

Since ~ ~ T, it follows that 

E < T (13) 

is the condition for a bound system, i.e., % < 0. Since relativistic effects 
should not affect the nature of bound systems by converting them into unbound 
ones, we argue that the same condition for bound systems also holds in the 
extreme ultrarelativistic limit even though it cannot be derived from the 
relativistic virial. In the extreme ultrarelativistic limit of a photon "star," the 
condition for hydrostatic equilibrium becomes independent of the radius, 
indicating a lack of stability. 
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Also implied in the thermal equation of state (4) is that what was formally 
identified as half the number of degrees of freedom has now acquired a 
temperature dependence. And this temperature dependence implies that the 
number of degrees of freedom decreases with increasing temperature. Coun- 
terintuitive results such as this one are typical of high-temperature, high- 
density regimes (Sertorio, 1979). 

Application of the second law to the average equation of state will yield 
an expression for the entropy. For, according to the second law, the derivative 
of the entropy with respect to the energy is the inverse temperature: 

d E -  T E v0 (14) 

Integrating (14), we obtain a negative quantity which can hardly be identified 
with an entropy. The limits of traditional thermodynamics have been exceeded, 
and what we are dealing with in bound systems is not an entropy at all, but 
rather, the r e d u c t i o n  in entropy (Lavenda, 1995) 

= - -  Vo (15) 
o" 

due to a constraint that has been placed upon the system. 
In a general thermodynamic system in thermodynamic equilibrium the 

three state variables P, V, and T are related through a mechanical equation 
of state, so that only two or the three variables are independent. If an a d d i t i o n a l  

condition is imposed between two of the independent state variables, in this 
case between volume and temperature, then only one variable can be varied 
independently. The reduction in the number of independent thermodynamic 
variables is akin to a polytrope (Cox, 1968). That E0 < E is indicative 
of particle interactions which increase the entropy reduction, which would 
otherwise be proportional to the negative of the number of particles, just as 
the entropy is proportional to the number of particles of an ideal degenerate 
gas. Conventional thermodynamics therefore has at least two limits: small 
systems in which Stirling's approximation fails (Lavenda, 1991), and bound 
systems (Lavenda, 1995). 

In either bound or unbound systems the number of particles is propor- 
tional to the volume of phase space occupied by the system, 

v ~ V / h  3 ~ V T  ~ (16) 

provided there is no particle conservation, where hr is the thermal wavelength 
and -q is the adiabatic exponent, or the number of half degrees of freedom. 
For a nonrelativistic monatomic gas "q = 3/2, while for an ultrarelativistic 
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gas ~1 = 3. It will turn out that V is not the geometric volume enclosing the 
system, but, rather, the volume that is determined by range of the interactions. 

In contrast to an unbound degenerate ideal gas, a t  c o n s t a n t  v o l u m e ,  where 

v ~ E 'l/(l+'l) ~ T n (17) 

in a bound system, corresponding to a strictly stable law, we have 

v ~ E -~  ~ T -~/(l+~) "-- T -~  (18) 

which defines the canonical strictly stable law exponent or, assuming values 
on the open interval (0, 1). A comparison of (17) with (18) would lead to 
the absurd conclusion that cr = - 'q/(1 + "11) or ~ = -or/1 + tr). This is to 
say that for tr > 0, the number of half degrees of freedom must be negative. 
The problem is that we have not allowed for variations in the volume with 
temperature in the case of  bound systems. 

The string of relations in (16) can be extended to 

v ~ V I k  3 ~ V T  n ~ E ~ N T - ~  (19) 

in bound systems where the last relation in (19) follows from the application 
of the second law. The ~- sign in the exponent of the energy applies to 
strictly stable and quasistable laws, respectively (Lavenda, 1996). The two 
are distinguished by the interval over which the canonical exponent ot varies. 
As we have mentioned for strictly stable laws, the exponent et varies over 
the open interval (0, 1), whereas for quasistable laws, its range is (1, 2). 
The strictly stable law governs maximum values, while the quasistable law 
manages minimum values. Here, we will be concerned only with strictly 
stable laws for positive, maximum values. 

From the chain of relations (19) it follows that 

V'/~+'1) = const (20) 

The adiabatic case a = 0 separates bound systems, where ot > 0, from 
unbound systems, where a < 0. Indeed, the condition for a bound system, 
(13), written as ~V < T, where the energy density e ~ T n+~, simply translates 
into the fact that T l - "  < T for e~ > 0. Alternatively, if V = const, (19) 
implies that "q = -or,  which gives S - E ~ m + n ) .  This is identical to the 
expression for the entropy density [cf. (21) below], and so implies that V = 
const. Consequently, as ot goes from the negative value - x  I to positive values, 
either on the open interval (0, 1) or (1, 2), 3 the entropy is converted into an 
entropy reduction with the adiabatic case separating the two domains. 

It must be emphasized that d e n s i t y  r e la t i ons  c a n n o t  d i s c r i m i n a t e  b e t w e e n  

b o u n d  a n d  u n b o u n d  s y s t e m s ;  o n l y  t he i r  g l o b a l  r e la t i ons  c a n  b e c a u s e  o f  the  

3The case a = I must be handled separately and corresponds to the Cauchy distribution. 
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appearance o f  the volume in these expressions. For example, the entropy 
density is 

s -- cnm+,~) (21) 

From (19) it follows that if the volume is constant, the particle number will 
increase with temperature as T ~. In contrast, for a bound system it will 
decrease with temperature as T-".  In either case the number density is left 
invariant, varying with temperature as v /V  ~ Tq. This is probably why bound 
systems have gone undiscovered until now: their density relations are identical 
to those of unbound systems. However, the differences in the global relations 
imply that there are fundamental differences in the underlying statistics. In 
other words, for bound systems, the volume is elevated to a dependent 
variable, like that of the particle number, and not a mere parameter as in 
Bose-Einstein and Fermi-Dirac statistics. Hence, we anticipate that the con- 
figuration-space volume element will acquire a more prominent role than it 
has hitherto been given. In small volumes at high energies it is the momentum- 
space volume element that should thermalize prior to the configuration-space 
volume element, which should undergo expansion as the temperature drops 
(Belenkij and Landau, 1965). The momentum-space volume element will 
have then attained its minimum value, which is the inverse of the 'thermal' 
volume per particle, whose radius is the thermal wavelength. 

For unbound systems with constant volume we can immediately proceed 
to replace the density relation (21) by its global one, S - E nm+~). However, 
for bound systems we must take into consideration the variation of the volume 
with temperature, (20). Consequently, the density relation (21) is equivalent 
to the global relation 

S ~ V1/(l+'q)E~l(l+'q) 

E(~-cr)/(l +~) T-~/O +~) 

E-~r/( l  +~l)+.q(l-crla)l(l +~l) = E-~, (22) 

where we have used cr = ed(1 - et). Because the entropy density is a concave 

function of the energy density, so, too, should the entropy be a concave 
function of the energy. However, (22) is clearly a convex function. Conse- 
quently, we are led to consider the negative of that expression as the entropy 
reduction due to the constraint (20). The first moment will be identical since 
dS/dE = ds/de, while the second moment is 

(AE)2/V  = (Ac) 2 

because d2S/dE z = V - t  d2s/de 2. 
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3. PROPERTIES OF THE ASYMPTOTIC DISTRIBUTION 

It will prove convenient to write the generating function of the double- 
exponential distribution (7) as 

( 0i fl 0 ~ (u) = e -v  = e -wy-v~ d(try) (23) 

rather than ~ itself, because the independent variable y always appears in 
the company of or, so that if we were to retain the usual definition of the 
generating function, then we would be forced to identify the independent 
variable as ~y rather than y itself. The fact that we are free to do so reveals 
an important property of the distribution (7); namely, the probability law 
is infinitely divisible (Feller, 1968). Infinitely divisible distributions imply 
stochastic independence: the generating function factorizes on nonoverlapping 
intervals on the space on which it is defined. 

Due to the power law structure inherent in (7), the generating function 
can be considered as the Laplace transform 

fo~ ~ ( v )  = e-~Xl)(x)  dx  

of the structure function 

or as the Mellin transform 

l-l(y) =cre  -v~176 (24) 

of the structure function 

At(n) = x~-ml~(x) dx 

where the Mellin transform variable is ~ = try. The logarithm of either 
structure function is proportional to the entropy reduction (15). 

The logarithm of the generating function (23), 

l a b ( v ) = - v [  l c r  - l n ( ~ ) ]  (26) 

is a completely monotone function, since its derivatives alternate in sign. For 
example, the first two derivatives are 

d l n ~  l l n ( ~ )  - ~  (27) 
dv  cr 



1742 Lavenda  

and 

d 2 1 d~ 
In ~ - - > 0 ( 2 8 )  

d v  2 tyv d v  

which are the first two central moments of the distribution. Expression (28) 
not only shows that the logarithm of the generating function is convex in 
the number of half degrees of freedom, but, in addition, that the average 
energy is a d e c r e a s i n g  function of the degrees of  freedom. This is yet another 
counterintuitive prediction for bound systems. 

The structure of exponential distributions and the Legendre transform 
lead to the conclusion that there must exist a dual function to the logarithm 
of the generating function. The dual, which must turn out to be concave in 
the dimensionless energy variable ~, is defined by the Legendre transform: 

d V 0 e _  ~ 
In ~ - ~v In ~ = (r (29) 

This function will be appreciated as the entropy reduction (15) when the 
transform (5) is made. 

In Hagedorn's theory of  high energies (Sertorio, 1979), the structure 
function increases as some exponential function of the energy with an expo- 
nent less than unity. This implies that for the convergence of the Laplace 
integral there must be a maximum temperature. The reason for introducing 
a maximum temperature is that every time a characteristic temperature range 
is surpassed, what was an elementary building block begins to show compos- 
iteness. Introducing a high-temperature cutoff simply means that there is a 
limit to the elementary constituents of  matter (Sertorio, 1979). In contrast to 
Hagedorn's theory, where the number of particles increases with the energy 
as the temperature tends to a constant, we have assumed, following the 
experimental evidence of cosmic ray showers, that the number of particles 
surpassing a given energy is a decreasing function of that energy. 

Hagerdorn's entropy dens i ty ,  s ~ ~3/(3+K), is a concave function of the 
energy density e over the half open interval 0 < K < oo. The physical 
significance attributed to K is that it is an ordering parameter for degeneracies 
(Sertorio, 1979), the case K = 1 corresponds to a photon gas. The connection 
between the different values of K and the different statistical counting of 
states in phase space is inaccurate because s = s(e) is an i n t e g r a t e d  r e la t i on  

for which there is no memory of the statistical counting procedure. We will 
now show that there is only a single value of K which is acceptable, namely, 
K = I .  

Consider the following string of relations: 

S ~ V T  n ~ E n/(n+K) = ( e V )  n/(n+K) 
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From this it follows that 

T ('q+K)/K ~ E TM V - l h q  ~ E 

The last relation follows from the second law applied to the entropy density 
(21), namely d s / d e  ~ e -~/('~§ ~ T -~ .  This condition leads to the conclusion 
that V -- e -~/~(~-K). But the energy density cannot be a function of the volume 
for otherwise E - ~V ~ e E~-~(~-~)1/~, and this requires us to set K = 1, 
implying that V = const. 

4. FLUCTUATIONS IN PARTICLE NUMBER 

Thus far we have considered the distribution for y with v as a parameter 
and found the asymptotic distribution in energy to be driven by the double 
exponential (7). To add further support in favor of (11) as the asymptotic 
distribution for the probability that the v particles will have energies >E,  we 
transform it into a well-known probability law giving fluctuations in the 
number of particles v. This follows from the rather remarkable property that 
when we invert the roles of y and v, treating the latter as the variate and the 
former as the parameter, which we evaluate at maximum likelihood (27), we 
obtain a well-known discrete distribution for the degrees of freedom. Setting 
y at its maximum likelihood value has the effect of transforming the distribu- 
tion into an e r r o r  l a w  (Lavenda, 1991, w Denoting by o that value in 
(27) and evaluating the double-exponential distribution (7) at y = y results 
in the well-known Poisson distribution 

p(v;O) = .,v--Te - ~  (30) 

The Poisson distribution of finding v particles is assumed to apply for 
showers if the presence of one particle at any given depth is independent of 
the processes which precede it. It is generally believed that the Poisson law 
(30) greatly underestimates the fluctuations in the number of particles at any 
given depth because of the lack of statistical independence (Rossi, 1952). 
The presence of the Poisson law (30) could have been intuitively sensed 
from the fact that the negative of the logarithm of the generating function 
in (23) has the form of the function which determines the error law (Lavenda, 
1991, p. 84). The error law for deviations from the most probable value p is 
an expression of the convexity of the logarithm of the generating function (23). 

Finally, it should be emphasized that the assumption that particle fluctua- 
tions follow a Poissonian law is commonly considered to be an a d d i t i o n a l  

assumption based on the supposedly statistical independence of the emission 
processes (Rossi, 1952). Here, we have shown it to be a consequence of the 
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fact that the probability of finding v particles with energies > E is given by 
an asymptotic distribution of order statistics for the largest values. It is a 
matter for experiment to discriminate between this distribution and the one 
derived by Fermi based on an asymptotic form of products of phase-space 
volume elements (Fast and Hagedorn, 1963; Fast et  al., 1963; Hagedorn, 
1965; Auberson and Escoubes, 1965). 
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